Johnson type bounds on constant dimension codes

نویسندگان

  • Shu-Tao Xia
  • Fang-Wei Fu
چکیده

Very recently, an operator channel was defined by Koetter and Kschischang when they studied random network coding. They also introduced constant dimension codes and demonstrated that these codes can be employed to correct errors and/or erasures over the operator channel. Constant dimension codes are equivalent to the so-called linear authentication codes introduced by Wang, Xing and Safavi-Naini when constructing distributed authentication systems in 2003. In this paper, we study constant dimension codes. It is shown that Steiner structures are optimal constant dimension codes achieving the Wang-Xing-Safavi-Naini bound. Furthermore, we show that constant dimension codes achieve the WangXing-Safavi-Naini bound if and only if they are certain Steiner structures. Then, we derive two Johnson type upper bounds, say I and II, on constant dimension codes. The Johnson type bound II slightly improves on the Wang-Xing-Safavi-Naini bound. Finally, we point out that a family of known Steiner structures is actually a family of optimal constant dimension codes achieving both the Johnson type bounds I and II. keywords: Constant dimension codes, linear authentication codes, binary constant weight codes, Johnson bounds, Steiner structures, random network coding. This research is supported in part by the NSFC-GDSF Joint Fund under Grant No. U0675001, and the open research fund of National Mobile Communications Research Laboratory, Southeast University. S.-T. Xia is with the Graduate School at Shenzhen of Tsinghua University, Shenzhen, Guangdong 518055, P. R. China. He is also with the National Mobile Communications Research Laboratory, Southeast University, P.R. China. E-mail: [email protected] F.-W. Fu is with the Chern Institute of Mathematics, and The Key Laboratory of Pure Mathematics and Combinatorics, Nankai University, Tianjin 300071, P.R. China. Email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvements on the Johnson bound for Reed-Solomon codes

For Reed-Solomon Codes with block length n and dimension k, the Johnson theorem states that for a Hamming ball of radius smaller than n − √ nk, there can be at most O(n) codewords. It was not known whether for larger radius, the number of code words is polynomial. The best known list decoding algorithm for Reed-Solomon Codes due to Guruswami and Sudan [13] is also known to work in polynomial ti...

متن کامل

Upper Bounds for Constant - Weight

| Let A(n; d; w) denote the maximum possible number of codewords in an (n; d; w) constant-weight binary code. We improve upon the best known upper bounds on A(n; d; w) in numerous instances for n 6 24 and d 6 10, which is the parameter range of existing tables. Most improvements occur for d = 8; 10, where we reduce the upper bounds in more than half of the unresolved cases. We also extend the e...

متن کامل

Upper bounds for constant-weight codes

Let ( ) denote the maximum possible number of codewords in an ( ) constant-weight binary code. We improve upon the best known upper bounds on ( ) in numerous instances for 24 and 12, which is the parameter range of existing tables. Most improvements occur for = 8 10 where we reduce the upper bounds in more than half of the unresolved cases. We also extend the existing tables up to 28 and 14. To...

متن کامل

Constant Weight Codes with Package CodingTheory.m in Mathematica

The author offers the further development of package CodingTheory.m [1] in the direction of research of properties and parameters of Constant weight codes (lower and upper bounds) based on works [2], [3] and also using the Table of Constant Weight Binary Codes (online version, Neil J. A. Sloane: Home Page http://www.research.att.com/~njas/codes/Andw/) and the table of upper bounds on A(n, d, w)...

متن کامل

On the extendability of particular classes of constant dimension codes

In classical coding theory, different types of extendability results of codes are known. A classical example is the result stating that every (4, q − 1, 3)-code over an alphabet of order q is extendable to a (4, q, 3)-code. A constant dimension subspace code is a set of (k− 1)-spaces in the projective space PG(n− 1, q), which pairwise intersect in subspaces of dimension upper bounded by a speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2009